1.00

0.04

POCUS Club

Echo in Life Support & Shock

Evidence

Cardiac arrest - Gaspari et al. 2016

- Non-randomised, prospective observational study, 20 hospitals in US/Canada, n= 793.
- Included OHCA or in-ED arrest in PEA (n=411) and asystole (n=379). Excluded pts with short resuscitation time (<5 min). US performed at beginning of ALS.
- Primary outcome was **survival to hospital admission**.
- Cardiac activity on US associated with 1 survival to admission (OR 3.6, 2.2-5.9) and discharge (OR 5.7, 1.5-21.9).
- No cardiac activity + asystole strongly associated with non-survival (though 0.6% survived to discharge).

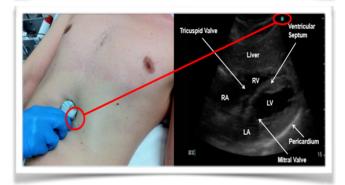
Echo in cardiac arrest

Indication

PEA/Asystole - to differentiate low-flow states (organised cardiac activity) from true PEA (with cardiac standstill).

Technique

Subxiphoid view - ideal as out of the way of chest compressions. Use **overhand grip**.


Try parasternal views on subsequent rhythm check if no subsiphoid window.

What to look for?

- Cardiac activity better prognosis if cardiac activity present, may be indication to continue resuscitation.
- 2. **Pericardial effusion/tamponade** US is the only reliable way to exclude this.
- 3. **Gross RV dilatation/dysfunction** Note that cardiac arrest itself may cause RV dilatation (shown in pigs, Aagaard 2017), so not always be specific for PE. Consider hx, repeat echo in ROSC & look for other signs!

	Cardiac Activity on Echo					
	Rhythm: Asystole					
5	Sensitivity	90				
5	Specificity	0				
F	Positive Predictive Value	0.99				
1	Negative Predictive Value	0.00				
	Rhythm: PEA					
5	Sensitivity	47				
5	Specificity	91				

Non-survival to Hospital Discharge if no

KEY QUESTIONS

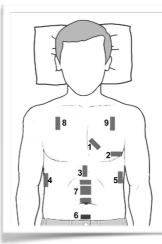
Positive Predictive Value

Negative Predictive Value

Is there cardiac activity?

Is there pericardial effusion?

Is there gross RV enlargement?


"Can anyone feel a pulse?"

- No cardiac windows? Consider US for detecting pulse instead of manual pulse check (which can be unreliable).
- Use linear probe, vascular preset.
- Femoral is most straightforward.
- Consider inserting A-line whilst at it!

POCUS CLUB @NISHCHERIAN

Tips to avoid prolonged pauses to CPR

- 1. Have US turned on and probe pre-gelled prior to patient arrival.
- 2. Have probe in position during chest compressions to find window and minimise time to getting a view.
- 3. Record a clip, which you can review whilst CPR ongoing.
- 4. Have a counter (count down from 10) to avoid getting task-focussed.

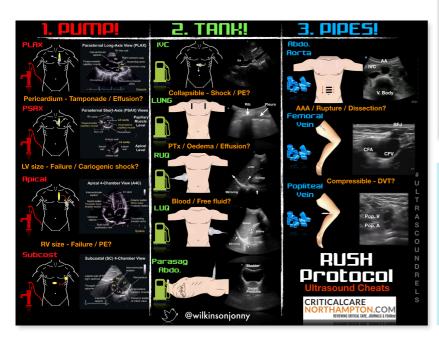
RUSH(ed) Exam Sequencing

- 1. Parasternal Long Cardiac View
- 2. Apical Four-Chamber Cardiac View
- 3. Inferior Vena Cava View
- 4. Morison's with Hemothorax View
- 5. Splenorenal with Hemothorax View
- 6. Bladder View
- 7. Aortic Slide Views
- 8. Pulmonary View
- 9. Pulmonary View

Use Curvilinear Array for all Views Add in a search for Ectopic Pregnancy and DVT depending on clinical circumstances

Shock

POCUS can help diagnose or categorise the cause of shock. Consider in unexplained hypotension, tachycardia, tachypnoea or looks sick (LLS+ve).


RUSH protocol - "HI-MAP (ED)"

Easy to remember mnemonic for sequence of scan. Asking **focussed questions** will reduce time. Can be done in <5 min if well-practiced!

Pump, Tank & Pipes approach

Helps to categorise shock using sonographic signatures.

Combining heart, lung and IVC can help determine where patient lies on Starling's curve! Use it to guide fluid resuscitation.

Global LV function? Pericardiac effusion? Heart **RV** strain? Flat or distended? IVC Morisson's pouch Peritoneal or pleural free fluid? (+rest of FAST) **A**orta **Aneurysm** or dissection? **Pneumothorax? Pulmonary B-lines**? Ectopic? **Optional**

RUSH Evaluation	Hypovolemic Shock	Cardiogenic Shock	Obstructive Shock	Distributive Shock
Pump	Hypercontractile heart Small chamber size	Hypocontractile heart Dilated heart	Hypercontractile heart Pericardial effusion Cardiac tamponade RV strain Cardiac thrombus	Hypercontractile heart (early sepsis) Hypocontractile heart (late sepsis)
Tank	Flat IVC Flat jugular veins Peritoneal fluid (fluid loss) Pleural fluid (fluid loss)	Distended IVC Distended jugular veins Lung rockets (pulmonary edema) Pleural fluid Peritoneal fluid (ascites)	Distended IVC Distended jugular veins Absent lung sliding (pneumothorax)	Normal or small IVC (early sepsis) Peritoneal fluid (sepsis source) Pleural fluid (sepsis source)
Pipes	Abdominal aneurysm Aortic dissection	Normal	DVT	Normal

RESOURCES

5 Min Sono: http://5minsono.com/rush /

POCUS Atlas: http://www.thepocusatlas.com/ea-echo

EMCrit: https://emcrit.org/rush-exam/ https://emcrit.org/wp-content/ uploads/2011/03/New-RUSH-Review-Article1.pdf

Critical Care Northampton: https://criticalcarenorthampton.com/

pocusgrams/
EMLRC: https://www.emlrc.org/rush-vti/
Books: Echo Guided Life Support eBook (EGLS), Manual of Emergency and Critical Care Ultrasound (Noble), Introduction to Bedside Ultrasound Volume 1 (Dawson), Emergency Point-of-Care Ultrasound (Connolly)